Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Cell Rep ; 42(4): 112307, 2023 Mar 15.
Article in English | MEDLINE | ID: covidwho-2249129

ABSTRACT

Animal reservoirs of sarbecoviruses represent a significant risk of emergent pandemics, as evidenced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Vaccines remain successful at limiting severe disease and death, but the potential for further coronavirus zoonosis motivates the search for pan-coronavirus vaccines. This necessitates a better understanding of the glycan shields of coronaviruses, which can occlude potential antibody epitopes on spike glycoproteins. Here, we compare the structure of 12 sarbecovirus glycan shields. Of the 22 N-linked glycan attachment sites present on SARS-CoV-2, 15 are shared by all 12 sarbecoviruses. However, there are significant differences in the processing state at glycan sites in the N-terminal domain, such as N165. Conversely, glycosylation sites in the S2 domain are highly conserved and contain a low abundance of oligomannose-type glycans, suggesting a low glycan shield density. The S2 domain may therefore provide a more attractive target for immunogen design efforts aiming to generate a pan-coronavirus antibody response.

2.
Emerg Microbes Infect ; 10(1): 1519-1529, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1316787

ABSTRACT

The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutated continuously and newly emerging variants escape from antibody-mediated neutralization raised great concern. S protein is heavily glycosylated and the glycosylation sites are relatively conserved, thus glycans on S protein surface could be a target for the development of anti-SARS-CoV-2 strategies against variants. Here, we collected 12 plant-derived lectins with different carbohydrate specificity and evaluated their anti-SARS-CoV-2 activity against mutant strains and epidemic variants using a pseudovirus-based neutralization assay. The Lens culinaris-derived lentil lectin which specifically bind to oligomannose-type glycans and GlcNAc at the non-reducing end terminus showed most potent and broad antiviral activity against a panel of mutant strains and variants, including the artificial mutants at N-/O-linked glycosylation site, natural existed amino acid mutants, as well as the epidemic variants B.1.1.7, B.1.351, and P.1. Lentil lectin also showed antiviral activity against SARS-CoV and MERS-CoV. We found lentil lectin could block the binding of ACE2 to S trimer and inhibit SARS-CoV-2 at the early steps of infection. Using structural information and determined N-glycan profile of S trimer, taking together with the carbohydrate specificity of lentil lectin, we provide a basis for the observed broad spectrum anti-SARS-CoV-2 activity. Lentil lectin showed weak haemagglutination activity at 1 mg/mL and no cytotoxicity activity, and no weight loss was found in single injection mouse experiment. This report provides the first evidence that lentil lectin strongly inhibit infection of SARS-COV-2 variants, which should provide valuable insights for developing future anti-SARS-CoV-2 strategies.


Subject(s)
Antiviral Agents/pharmacology , Lens Plant/chemistry , Plant Extracts/pharmacology , Plant Lectins/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemistry , Humans , Mice , Mice, Inbred BALB C , Plant Extracts/chemistry , Plant Lectins/chemistry , SARS-CoV-2/growth & development , Seeds/chemistry
3.
3 Biotech ; 11(2): 109, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1060478

ABSTRACT

The pandemic COVID-19 was caused by a novel Coronavirus-2 (SARS-CoV-2) that infects humans through the binding of glycosylated SARS-CoV-2 spike 2 protein to the glycosylated ACE2 receptor. The spike 2 protein recognizes the N-terminal helices of the glycosylated metalloprotease domain in the human ACE2 receptor. To understand the susceptibility of animals for infection and transmission, we did sequence and structure-based molecular interaction analysis of 16 ACE2 receptors from different mammalian species with SARS-CoV-2 spike 2 receptor binding domain. Our comprehensive structure analysis revealed that the natural substitution of amino acid residues Gln24, His34, Phe40, Leu79 and Met82 in the N-terminal α1 and α2 helices of the ACE2 receptor results in loss of crucial network of hydrogen-bonded and hydrophobic interactions with receptor binding domain of SARS-CoV-2 spike protein. Another striking observation is the absence of N-glycosylation site Asn103 in all mammals and many species, lack more than one N-linked glycosylation site in the ACE2 receptor. Based on the loss of crucial interactions and the absence of N-linked glycosylation sites we categorized Felis catus, Equus caballus, Panthera tigris altaica, as highly susceptible while Oryctolagus cuniculus, Bos Tauras, Ovis aries and Capra hircus as moderately susceptible species for infection. Similarly, the E. asinus, Bubalus bubalis, Canis lupus familiaris, Ailuropoda melaleuca and Camelus dromedarius are categorized as low susceptible with Loxodonta Africana, Mus musculus, Sus scrofa and Rattus rattus as least susceptible species for SARS-CoV-2 infection. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-020-02599-2.

SELECTION OF CITATIONS
SEARCH DETAIL